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ABSTRACT

This thesis examines and identifies the problems of shape collapse in large

deformation image registration. Shape collapse occurs in image registration when a

region in the moving image is transformed into a set of near zero volume in the target

image space. Shape collapse may occur when the moving image has a structure that is

either missing or does not sufficiently overlap the corresponding structure in the tar-

get image [6]. We state that shape collapse is a problem in image registration because

it may lead to the following consequences: (1) Incorrect pointwise correspondence be-

tween different coordinate systems; (2) Incorrect automatic image segmentation; (3)

Loss of functional signal. The above three disadvantages of registration with shape

collapse are illustrated in detail using several examples with both real and phantom

data. Shape collapse problem is common in image registration algorithms with large

degrees of freedom such as many diffeomorphic image registration algorithms. This

thesis proposes a shape collapse measurement algorithm to detect the regions of shape

collapse after image registration in pairwise and group-wise registrations. We further

compute the shape collapse for a whole population of pairwise transformations such

as occurs when registering many images to a common atlas coordinate system. Ex-

periments are presented using the SyN diffeomorphic image registration algorithm

and diffeomorphic demons algorithm. We show that shape collapse exists in both of

the two large deformation registration methods. We demonstrate how changing the

input parameters to the SyN registration algorithm can mitigate the collapse image
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registration artifacts.
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PUBLIC ABSTRACT

Image registration is the process of finding a geometric transformation that

defines an optimal pointwise correspondence between a moving image and a target

image (fixed image). This correspondence transformation deforms the moving image

into the shape of the target image.

This thesis mainly examines the problems of shape collapse in image regis-

tration with large degrees of freedom for its transformation function. Shape collapse

occurs in image registration when some structure with nonzero volume in the moving

image is transformed into a set of near zero volume in the target image space. Shape

collapse may occur when the moving image has a structure that is either missing or

does not sufficiently overlap the corresponding structure in the target image [6]. We

state that shape collapse is a problem in image registration because it may lead to

the following consequences: (1) Incorrect pointwise correspondence between moving

image and target image, for example, a point in the white matter in the moving image

was mapped to a point in the gray matter in the target image; (2) Incorrect auto-

matic image segmentation, which is to deform the label map of the moving image into

the target image space using the generated transformation to obtain a segmentation

of the target image; (3) Loss of functional signal, which may occur when mapping

functional data such as fMRI, PET, SPECT using a transformation with a shape

collapse if the functional signal occurs at the collapse region. The above three dis-

advantages of registration with shape collapse are illustrated in detail using several

vi
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examples. We demonstrate that shape collapse is common in large deformation image

registration. This thesis proposes a shape collapse measurement algorithm to detect

regions in the target image space that have shape collapse problem after pairwise

image registration. Each pairwise registration may exhibit the collapse problem. We

evaluate the percentage of whole population that has a shape collapse at each point in

the target image space. By evaluating the shape collapse for a population of pairwise

transformations and generating a population shape collapse probability map. We

show that shape collapse exists in both the SyN diffeomorphic and the diffeomorphic

demons large deformation image registration methods. We demonstrate that chang-

ing the input parameters to the SyN registration algorithm can mitigate the collapse

image registration artifacts. Finaly, we show that reducing the shape collapse may

not necessarily solve the poor correspondence problem.
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CHAPTER 1
INTRODUCTION

The goal of medical image registration is to find a one-to-one mapping between

two different coordinate systems such that points correspond to the same biological

structure are mapped to each other [15]. Applications of medical image registration

include automatic image segmentation [16][7][5]; radiation theory [17][19][12]; com-

bining different imaging modalities of the same subject [4][14][11].

Durumeric, Oguz and Christensen [6] were the first to investigate the shape

collapse problem in image registration. Shape collapse occurs when a foreground

or background structure in the moving image with non-zero volume is transformed

into a set of near zero volume in the target image coordinate system [6]. This may

be a desirable property if the structure does not exist in the target image, i.e., no

correspondence exists if a structure is present in the moving image but does not exist

in the target image. However, a collapse is not desirable if a structure or part of a

structure with non-zero volume present in the moving image is mapped to a set of near

zero volume rather than to its corresponding location in the target image. In the later

case, the estimated transformation defines an inaccurate pointwise correspondence

between the moving and target image. Inaccurate correspondence is a problem when

one wants to map information from the coordinate system of the moving image to

the coordinate system of the target image. For example, it is common to use the

correspondence transformation to map object names/labels or functional data such

as fMRI, PET, and SPECT from one image coordinate system to another.
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One type of shape collapse problem is illustrated in Fig. 1.1 by image reg-

istration of two MR images of the brain. Two 3D T1-weighed MR images of the

brain were registered using the symmetric diffeomorphic image (SyN) registration [1]

method developed by B.B. Avants et al. and is distributed as part of the Automatic

Normalization Toolkit (ANTs) [2]. In this example, the T1 image shown in Fig. 1.1a

was registered to the image shown in Fig. 1.1b; Figs. 1.1c and 1.1d show the result-

ing deformed moving images. The red circles show regions of shape collapse. Notice

that the cerebral cortex inside the red circles in the deformed image appear to have

collapsed in order to match the target image in these regions, which does not contain

such cortical structure in those regions. Small regions of shape collapse like these are

often hard to detect and are often over looked. However, if this transformation is used

to map information from the moving image coordinate system to that of the target

image, any information such as structure labels or functional brain response would

map to a much smaller region in the target coordinate system. It is even possible

that all information could be lost if an entire region of interest in the moving image of

non-zero volume is mapped to a region of zero volume in the target image coordinate

system. Another problem with transformations that contain regions of shape collapse

is that they produce incorrect correspondences in the vicinity of the shape collapse.

We note that shape collapse image registration artifacts like those shown in

Fig. 1.1 are produced by many diffeomorphic image registration algorithms. We

chose to mainly study the SyN registration algorithm in this paper since it is publicly

available and because it is used in the BRAINS AutoWorkup pipeline (Brain Research:
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(a) Moving image (b) Target image

(c) Deformed moving image (d) Collapsed regions

Figure 1.1: Demonstration of shape collapse problem in pairwise 3D MR brain image

registration. Panel: a. Transverse slice of moving image, b. Transverse slice of the

target image, c. Deformed moving image, collapse regions shown inside red circles,

d. Closer view of panel c.
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Analysis of Images, Networks, and systems [13]) that is commonly used to nonrigidly

register brain images. We will also study the shape collapse problem using another

large deformation image registrant method, diffeomorphic demons algorithm [21],

which is available in Insight Toolkit (ITK). We use a simple 2D brain cortex phantom

example shown in Fig.1.2 to illustrate another type of shape collapse that may occur

using common diffeomorphic image registration algorithms. The white object in

these phantoms corresponds to a simplified cortex shape with a single sulcus in the

transverse orientation. The cortex in the moving image does not fully overlap with

the cortex in the target image. When using symmetric diffeomorphic registration

(SyN) with normalized cross correlation similarity cost function, the non-overlapped

cortex in the moving image collapsed to a set of near zero volume and a new cortex

grew out to match the non-overlapped cortex in the target image (see Fig.1.2e). The

desired transformation to match the moving image with the target image is a local

rigid rotation of the cortex in the moving image. A small collapse artifact that is

often ignored can be seen in Fig.1.2f at the bottom part of the deformed sulcus. Red

and arrows in the intermediate deformed moving image shows the directions of cortex

in the moving image collapsed new cortex grew out, respectively. To give more details

of how the cortex collapsed during registration, we select some intermediate deformed

images, which are shown in Fig.1.3.

The reason the shape collapse problem exists in the above case is that the

greedy similarity cost reduces immediately when the non-overlapped cortex collapses

or grows out instead of rotating. Therefore, shape collapse is a common problem for
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(a) Moving phantom image (b) Target phantom image (c) Final deformed grid;

zoomed on ROI

(d) Deformed moving im-

age

(e) Intermediate deformed

moving image; zoomed on

ROI

(f) Final deformed moving

image; zoomed on ROI

Figure 1.2: A simple 2D cortex phantom example to explain shape collapse when using

diffeomorphic image registration. The cortex in this example has a single sulcus which

we will call the region of interest (ROI). Notice that panels b and d look similar and

do not appear to have a collapse. Zooming in on the ROI in panels e and f show that

sulcus in the moving image did not rotate to match the target sulcus, but rather it

collapsed at the bottom and grew from the top.
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(a) Moving image (b) Iteration 6 (c) Iteration 12

(d) Iteration 18 (e) Iteration 24 (f) Iteration 29

(g) Iteration 35 (h) Iteration 45 (i) Fixed image

Figure 1.3: Flow of deformation of the phantom cortex using SyN registration.
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image registration methods using greedy cost functions.

The reason shape collapse problem is often overlooked or ignored is that when

investigating the quality of a registration algorithm, the primarily interest is whether

the deformed moving image and the target image look similar to each other or not,

without carefully looking at the point-to-point correspondences defined by the corre-

spondence transformation.

The BRAINS AutoWorkup (BAW) [13], is a NiPype (Neuroimaging in Python

Pipelines and Interfaces) based workflow that provides an automated procedure for

large-scale multi-center longitudinal MR image analysis; this includes denoising, spa-

tial normalization, intra-subject alignment, tissue classification, bias-field correction,

and structure segmentation.

In this paper, we mainly investigate the shape collapse problem in MR brain

image registration using BRAINS AutoWorkup pipeline, for which symmetric dif-

feomorphic image registration is part of its image registration process. We will also

examine shape collapse problem using the diffeomorphic demons algorithm [21]. We

will identify the problems of shape collapse in large deformation registration in detail.

We also propose an algorithm to detect and quantify the shape collapse after image

registration. By computing shape collapse map for each of 50 participants from a

bipolar disorder study, we obtained a population shape-collapse probability map to

evaluate percentage of the whole population that has a collapse problem at each point

of the brain. By changing the size of smoothing kernel of the SyN algorithm, we show

that we can reduce the shape collapse problem in our phantom example, but we still



www.manaraa.com

8

have the poor correspondence problem. This study indicates that new methods are

needed to reduce the shape collapse problem and improve the registration quality.
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CHAPTER 2
ILLUSTRATION OF PROBLEMS IN LARGE DEFORMATION

IMAGE REGISTRATION WITH SHAPE COLLAPSE

By definition, the goal of image registration to is to find the pointwise cor-

respondences between a moving image and a target image. Therefore, a good regis-

tration method is necessary to give a transformation that well defines the pointwise

correspondences between two coordinate systems. The shape collapse problem is

common in large deformation image registration and may cause problems such as

incorrect pointwise correspondence, incorrect automatic segmentation and loss func-

tional signal. In this chapter, we will demonstrate and explain those problems caused

by shape collapse using both real and phantom examples.

2.1 Shape Collapse in Registration of 3D MR Brain Images

We first use the example of registering two 3D MR brain images in Fig.1.1

to identify the problems caused by shape collapse. An MR brain image (Fig.2.1a)

was registered to a common brain atlas (Fig.2.1c) using symmetric diffeomorphic

registration algorithm. Landmarks F1 and F2 are in the cerebrospinal fluid (CSF) of

the brain in the moving image, and the correspondences between landmarks in moving

and target images are defined by the output transformation of SyN algorithm. It

appears that there is a collapse problem at the point F2; as we can see in the deformed

moving image Fig.2.1b, the sulcus containing F2 in the moving image collapsed to

a thin set during registration because the target image does not have a structure
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(a) Moving image with two

landmarks

(b) Deformed moving with

two transformed landmarks

(c) Reference image with

two transformed landmarks

Figure 2.1: Demonstration of incorrect correspondence and loss of functional signal

in regions with shape collapse.

similar to the sulcus containing F2 in the moving image. The point F1 in CSF of the

moving image was mapped a point in CSF of the target image, but the point F2 in

CSF of the moving image was mapped to a point in the gray matter of the target

image, which is an incorrect point-to-point correspondence caused by shape collapse,

i.e., the biological structure of the region containing F2 in the moving image does not

correspond to the biological structure of F2 in the target image.

The example in Fig.2.1 also shows that shape collapse may lead to incorrect

automatic image segmentation. Automatic image segmentation is to first register the

moving image with the target image, and then deform the label map of the moving

image into the target image space using the generated correspondence mapping to

obtain a segmentation of the target image. Shape collapse may lead to incorrect auto-
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matic image segmentation because it may cause incorrect pointwise correspondence.

Finally, the example in Fig.2.1 also demonstrates that shape collapse may also

cause loss of functional signal. Suppose there are some functional signal in the gray

matter around F2, since the sulcus collapsed to a really thin set during registration,

we will lose the functional signal if we use the correspondence transformation to map

the functional data to the target image space.

2.2 Shape Collapse in Registration of 2D Cortex Phantoms

We used the phantom example in Fig.1.2 to give an explicit demonstration of

stated disadvantages of shape collapse in large deformation image registration. Fig-

ure 2.2 shows the results of registering a 2D moving cortex phantom image (Fig.2.2a)

to a 2D target cortex phantom image (Fig.2.2b) using SyN diffeomorphic image reg-

istration algorithm. Notice that the final deformed image (Fig.1.2d) and the target

image look very similar, but when we zoom in the region of the sulcus and overlay the

moving image with segmentation of the sulcus (see colored regions in Fig.2.2c) and

deform it into the target image space using the transformation from SyN algorithm.

The deformed image with deformed segmentation overlaid (See Fig.2.2d) shows that

the red region in the moving image collapsed to a thin set with almost zero volume

in the target image space during registration, which may lead to loss of functional

signal if there are some functional data near the red region and we map them into

the target image space using the transformation with collapse.

In this example, we can also see that shape collapse causes incorrect pointwise
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(a) Moving phantom image (b) Target phantom image

(c) Segmentation overlaid on moving im-

age

(d) Deformed moving image with de-

formed segmentation overlaid

Figure 2.2: A phantom example showing loss of functional data and incorrect corre-

spondences when using SyN diffeomorphic image registration.
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correspondence. For example, the tip of the sulcus (on the boundary of the red region)

in the moving image was not mapped to the tip of sulcus in the target image space;

and the colored circular regions in the moving image were mapped to oval-shaped

regions in the target image. This phantom example also shows that shape collapse

may cause incorrect automatic image segmentation. For example, if we obtain the

segmentation of the target image by deforming the label map of the moving image into

the target image space using the transformation with collapse, we end up with a bad

segmentation of the sulcus in the target image because of incorrect correspondence

problem.
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CHAPTER 3
METHODS

3.1 SyN, Symmetric Diffeomorphic Image Registration

The SyN symmetric diffeomorphic image registration algorithm [1] registers

two images by mapping each image to a midpoint coordinate system (See Fig.3.1).

Let I : Ω → R and J : Ω → R represent two images to be registered where Ω ⊂ Rn

is the domain of the images. Define φ : Ω× [0, 1]→ Ω to be an isotopy between the

functions φ(·, 0) = f and φ(·, 1) = g such that f = Id is the identity map and g is

the mapping that deforms I into the shape of J via the action g · I , I(g−1). Define

ψ : Ω× [0, 1]→ Ω similarly such that ψ(·, 0) = Id and ψ(·, 1) · J = J(ψ−1(·, 1)) maps

J into the shape of I. Let v : [0, 1] → V and w : [0, 1] → V be time-dependent

velocity vector fields (See Fig.3.2) where V is a Hilbert space of smooth, compactly

supported vector fields on Ω. The diffeomorphic properties of the transformation φ

and ψ comes from the fact that they are parametrized by the smooth velocity fields v

and w through the O.D.E d
dt
φ(x, t) = v(φ(x, t), t) and O.D.E d

dt
ψ(x, t) = w(ψ(x, t), t),

where t ∈ [0, 1], x ∈ Ω, and the velocity fields v, w ∈ L2([0, 1], V ) [3]. We can interpret

the above O.D.E used to parametrize φ as: The differential of the curve/path φ(x, ·)

at time point t is a tangent vector at the point φ(x, t), which equals the value of the

vector field v(·, t) at point φ(x, t).

The SyN registration algorithm is stated as: Minimize the following cost func-
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Figure 3.1: SyN algorithm registers two images in the midpoint coordinate system.

Figure 3.2: The flow diffeomorhism φ parametrized by the velocity field v.
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tion with respect to velocity vector fields v and w

E(v, w) =

∫ 0.5

0

{
||v(x, t)||2V + ||w(x, t)||2V

}
dt

+

∫
Ω

CC
(
I(φ−1(x, 0.5)), J(ψ−1(x, 0.5))

)
dx

(3.1)

where the first term is the regularization term used to evaluate the smoothness of the

velocity vector fields v and w, || · ||V is a Sobolev norm on vector fields in the domain

Ω; the second term is the normalized cross correlation between the two deformed

images.

Notice that the normalized cross correlation is computed in a midpoint coor-

dinate system that is half-way between the coordinate systems of I and J , i.e., in the

t = 0.5 coordinate system.

Following the notation of [1], the normalized cross correlation is defined in

the following way. Define the images with their local mean subtracted as Ī(x) =

I(φ−1
0 (x, 0.5))−µI(x) and J̄(x) = J(φ−1

1 (x, 0.5))−µJ(x) where µI and µJ are the the

local intensity means of the voxels centered at x in a N ×N ×N window of deformed

images I and J , respectively. We usually choose N to be 5. The normalized cross

correlation between two deformed images at point x (in the midpoint coordinate

system) is then defined as

CC(Ī , J̄) =
< Ī, J̄ >2

< Ī >< J̄ >
=

A2

BC
(3.2)

where the inner products are taken over a N ×N ×N window.

The inner-product of two vector fields in the vector space V is defined through
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a differential operator L given by:

< f, g >V,< Lf, Lg >L2=< L+Lf, g >L2 (3.3)

where L+ is the adjoint of operator L.

From the above construction of the vector space V , a compact self-adjoint

operator [3] K : L2(Ω,R)→ V is uniquely defined by

< a, b >L2=< Ka, b >V (3.4)

The operator K is a Gaussian filter in the implementation of SyN algorithm in ITK,

i.e. K(x) = 1√
2πσ

e−|x|
2/σ2

.

Let φs,t : Ω→ Ω denote the composition φs,t = φt ◦ (φs)
−1. The interpretation

of φs,t(y) is that it is the position at time t of a particle that started at position y at

time s [3].

Lemma 3.1.1. The variation of mapping φs,t when v ∈ L2([0, 1], V ) is perturbed

along h ∈ L2([0, 1], V ) is given by [3]:

δhφ
v
s,t = lim

ε→0

φv+εh
s,t − φvs,t

ε

=
dφv+εh

s,t

dε
|ε=0

= Dφvs,t

∫ t

s

(Dφvs,u)
−1hu ◦ φvs,udu

(3.5)

Proof. The curve φv : [0, 1]→ Diff(Ω) is defined via the evolution equation

d

dt
φvt (x) = vt(φ

v
t (x)) (3.6)

The superscript v in φv is used to to denote explicit dependence of φ on the velocity
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field v. We first show the following two equations are true:

dφv+εh
s,t

dt
=
d(φv+εh

t ◦ (φv+εh
s )−1)

dt
By definition

= (vt + εht)
(
φv+εh
t

(
(φv+εh

s )−1
))

(Using Eq.3.6)

= vt ◦ φv+εh
t ◦ (φv+εh

s )−1 + εht ◦ φv+εh
t ◦ (φv+εh

s )−1

= vt ◦ φv+εh
s,t + εht ◦ φv+εh

s,t By definition

(3.7)

We have an additional result given by:

d

dt
Dφvs,t = D

d

dt
φvs,t = D(vt ◦ φvs,t) = Dφvs,t

vtDφ
v
s,t (3.8)

The first equality in Eq. 3.8 follows from the commutativity of partial derivatives. The

second equality follows from substituting Eq. 3.6 for d
dt
φvs,t. The last equality follows

from the chain rule. Note that the following notations are equivalent: Dφvs,t
vt =

(Dvt) ◦ φvs,t = (Dvt)|φvs,t , i.e., this notation refers to the differential of vt evaluated at

φvs,t.

Computing the differential of the left-hand side of Eq.3.5 in ε at ε = 0 gives

d

dt
δhφ

v
s,t =

d

dt

(dφv+εh
s,t

dε
|ε=0

)
=

d

dε

(dφv+εh
s,t

dt

)
|ε=0

=
d

dε

(
vt ◦ φv+εh

s,t + εht ◦ φv+εh
s,t

)
|ε=0 (Using Eq.3.7)

=
(

(Dvt ◦ φv+εh
s,t )

dφv+εh
s,t

dε
+ ht ◦ φv+εh

s,t + ε
d

dε
(ht ◦ φv+εh

s,t )
)
|ε=0

= (Dφvs,t
vt)δhφ

v
s,t + ht ◦ φvs,t

(3.9)

with initial condition δhφ
v
s,s = 0 since φvs,s is an identity map for any velocity field v.
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Let y(t) = δhφ
v
s,t, p(t) = −Dφvs,t

vt and q(t) = ht ◦ φvs,t. Then Eq.3.9 can be written as

dy

dt
+ p(t)y = q(t) (3.10)

The general solution to the linear first order differential equation in Eq.3.10 is given

by [18]

y = Ce−
∫ t
s p(w)dw + e−

∫ t
s p(w)dw ×

∫ t

s

q(u)e
∫ u
s p(w)dwdu (3.11)

Notice that e−
∫ t
s p(w)dwx(s) is the solution to the following O.D.E: ẋ(t) = −p(t)x(t)

with initial condition x(s). According to Eq.3.8, we know that e−
∫ t
s p(w)dwx(s) =

x(t) = Dφvs,t. Substitute t with s, we have e−
∫ s
s p(w)dwx(s) = x(s) = Dφvs,s = 1 since

φvs,s is the identity map whose differential is the identity matrix. Thus e−
∫ t
s p(w)dw =

Dφvs,t. Also notice that e
∫ u
s p(w)dw = (e−

∫ u
s p(w)dw)−1 = (Dφvs,u)

−1. Then Eq.3.11 can

be rewritten as

y = CDφvs,t +Dφvs,t ×
∫ t

s

q(u)× (Dφvs,u)
−1du (3.12)

Using the initial condition y(s) = δhφ
v
s,s = 0, we know the constant C in Eq.3.12 is

euqal to 0. Thus, we have

δhφ
v
s,t = y(t) = Dφvs,t ×

∫ t

s

q(u)× (Dφvs,t)
−1du

= Dφvs,t ×
∫ t

s

hu ◦ φvs,u × (Dφvs,u)
−1du

(3.13)

This is exactly the same as Eq.3.5.

Using lemma 3.1.1 and following the derivations in Beg et al. [3] and Avants

et al. [1], the gradients of the energy functional with respect to v(t) and w(t) are

given by

∇vE = 2v(x, t) +K

(
2A

BC
×
(
J̄(x)− A

B
Ī(x)

)
|Dφ−1(x, 0.5)|∇Ī(x)

)
(3.14)
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∇wE = 2w(x, t) +K

(
2A

BC
×
(
Ī(x)− A

C
J̄(x)

)
|Dψ−1(x, 0.5)|∇J̄(x)

)
(3.15)

3.2 Diffeomorphic Demons Registration

Thirion’s demons algorithm considers deformable image registration as a dif-

fusion process [20]. To match two images, demons algorithm considers the boundary

of an object O in one image S (called a scene image) as semi-permeable membranes

and the other image M (called a model image), considered as a deformable grid, is

deformed by effectors inside the membranes [20]. In [20], a demon at a point p ∈ S is

defined to be an effector which acts locally to push (if the corresponding point p′ ∈M

is inside O) or pull (if the corresponding point p′ ∈M is outside O) the model image

M . There is an associated elementary force for each demon, and the set of all demons

forces can be used to update the transformation from model image M to scene image

S.

Vercauteren el at. [21] extended Thirion’s demons algorithm to a non-parametric

diffeomorphic image registration algorithm, diffeomorphic demons algorithm, to ob-

tain smoother and more accurate transformations. Given two images M : Ω → R

and F : Ω→ R, and a diffeomorphic transformation s ∈ Diff(Ω), the diffeomorphic

demons algorithm aims to find stationary velocity field u that minimizes the following

correspondence energy:

Ecorr
s (u) = ||F −M ◦ s ◦ exp(u)||2 +

1

σ2
dist(s, s ◦ exp(u))2 (3.16)

where the distance function dist between two diffeomorphisms s, c ∈ Diff(Ω)) is

given by dist(s, c) = ||Id − s−1 ◦ c||. The diffeomorphic demons algorithm is stated
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as follows [21]:

1. Given the current transformation s ∈ Diff(Ω), compute an update field u by

minimizing Ecorr
s (u) in Eq.3.16 with respect to u.

2. Let c← s ◦ exp(u).

3. Let s← K ? c, where K is a Gaussian kernel.

In some cases, for example registration of MR brain images, diffeomorphic demons

registration algorithm can achieve similar results to registration algorithms whose

transformations are parametrized by time-variant velocity fields [10].

3.3 Collapse Detection Algorithm

Figure 3.3 shows collapse of an oval-shaped region (region inside the red oval in

the moving image), which contains cortex that has a collapse problem in the example

of registration of two MR images (See Fig.1.1) into a thin set (region inside the red

oval) in the target image space. Figure 3.4 is an animation showing the collapse of

a simple oval into a thin segment (from panel a to panel d), where blue arrows show

the direction of collapse.

To deform an image, we use the pullback transformation, the red arrows in

Fig.3.5 starting from the thin segment shows the pullback transformation. The trans-

formation φ acting on image I is defined to be I ◦ φ−1, notice φ−1 is the pullback

transformation defined in the target image space. The yellow point (in the target

image space) in the thin segment has a shape collapse problem; Regions inside the

yellow circle is a small neighborhood of it. Points in this neighborhood at the base
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(a) An oval region in the moving image

within which there is a collapse

(b) Oval region collapsed to a thin set

Figure 3.3: Collapse of a oval region in the moving MR image.

(a) Moving image: An oval (b) Intermediate deformed oval image

(c) Intermediate deformed oval image (d) Final deformed oval image

Figure 3.4: An animation showing collapse of a simple oval region into a thin segment.
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Figure 3.5: Pullback transformation. Points inside the yellow circle, which is a neigh-

borhood of a yellow point that has a collapse problem, come from different regions in

the moving image defined by the pullback transformation.

of top arrows come from the top of the big oval and points at the base of the bottom

arrows come from the bottom of the big oval; those points in the big oval forms several

almost disjoint sets.

Using pullback transformation, we introduce our idea of collapse detection

in 2D case. Given a point in the target image space, we look at the displacement

vectors in a 3 by 3 neighborhood about it (Fig.3.6a), and move the vectors to the same

starting point (Fig.3.6b). If there is a shape collapse at that point, the points in the

neighborhood of it will move in the opposite directions by the pullback transformation,

thus we can separate them into two or more clusters in the moving image space. If

there is no shape collapse, the points move in almost the same direction (See Fig.3.7).

We used the k-means clustering algorithm to define the center of each cluster, and

compute the distance between the cluster centers to define the amount of shape

collapse at a point p.
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Now we state our collapse detection algorithm in a more rigorous way. Let

Ω0 and Ω1 be two differentiable manifolds that represent the domains of images I :

Ω0 → R and J : Ω1 → R, respectively. Define the transformation ϕ : Ω0 → Ω1 to

be the transformation that acts on I0 to transform it into the shape of I1 via the

action ϕ · I0 , I0(ϕ−1). Note that ϕ−1 : Ω1 → Ω0 is a mapping from the domain

of I1 to the domain of I0. We say that a collapse happens at y ∈ Ω0 when ϕ maps

an open set U ⊂ Ω0 containing y to an open set ϕ(U) ⊂ Ω1 of near zero measure.

Alternatively, we say a collapse happens at x ∈ Ω1 if there exists an open (round)

ball V ∈ Ω1 containing x such that ϕ−1(V ) is mapped to an almost disconnected set

(concentrated in at least two different regions joined by thin connectors, such as an

hourglass) in Ω0.

Theoretically, shape collapse occurs in regions of near Jacobian determinant

with respect to the push forward transformation ϕ. But in practice, we do not

use Jacobian determinant as a measure of shape collapse for the following reasons:

(1) To compute the Jacobian of a large deformation, we need all the intermediate

transformations, and it requires a lot of calculations; (2) We cannot just use the

final transformation to calculate the Jacobian because the displacement vectors of a

large deformation may cross each other and give negative Jacobian determinants; (3)

We do not always have access to the intermediate transformations; (4) The Jacobian

determinant at each point is a scalar, it can not tell us the direction of shape collapse

but our collapse detection algorithm can.

The second definition of shape collapse above is more convenient for detecting
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(a) Displacement vectors at a point with

collapse

(b) Centered displacement vectors at a

point with collapse

Figure 3.6: With shape collapse, points pullback from at least two disjoint regions in

the moving image.

(a) Displacement vectors at a point with

collapse

(b) Centered displacement vectors at a

point with collapse

Figure 3.7: Without shape collapse, points pullback from a single connected region

in the moving image.
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points of collapse in image registration since ϕ−1 is used to compute the deformed

image of I0 into the shape of I1. In the case of the SyN registration algorithm, we

define ϕ−1 , φ−1(·, 0.5) ◦ ψ(·, 0.5) and Ω0 = Ω1 = Ω to be consistent with Eq. 3.1.

The following algorithm is used to detect where points of collapse occur in the

domain Ω1 of the image I1. Let G1 ⊂ Ω1 denote the discrete collection of voxel center

locations corresponding to the centers of the voxels of image I1. Repeat the following

steps for each x ∈ G1.

1. Let Nx ⊂ G1 be a neighborhood of x.

2. Let Dx = {ϕ−1(y)− y|y ∈ Nx} be the set of displacement vectors in the neigh-

borhood of x.

3. Compute the 2-means clustering of the set Dx. Let µ1 and µ2 denote the values

of the two means, respectively.

4. Let dx = ||µ1 − µ2|| denote the Euclidean distance between the two means.

Form the image of collapse points C : Ω1 → R using the rule C(x) = dx for x ∈ G1.

The results in this paper used a 3 × 3 voxel neighborhood for the 2D results

and a 3× 3× 3 voxel neighborhood for the 3D results.
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CHAPTER 4
EXPERIMENTS AND RESULTS

4.1 Imaging Data

Anatomical images from a study of bipolar disorder were used in this analysis

including images from 25 participants with bipolar disorder (14 male: 11 female; age

m = 38.6, sd = 13.06) and 25 healthy control participants (14 male: 11 female; age

m = 38.36, sd = 13.23). Participants provided written informed consent prior to

participation in the study. T1-weighted images were acquired with 1mm3 isotropic

resolution using a 3T Siemens scanner. T1-weighted images were acquired using a

3D magnetization-prepared rapid gradient echo sequence in the coronal plane (FOV:

256 × 256 × 256 mm3; matrix = 256 × 256 × 256, TR=2530ms; TE = 2.3ms; TI =

909ms; flip angle = 10; bandwidth = 180 Hz/pixel; and R=2 GRAPPA).

4.2 Image Registration Using BRAINS AutoWorkup

BRAINS AutoWorkup [13] provides a framework for automatically analyzing

MRI scans that incorporates several steps to provide well defined mappings between

each subject scan and a common brain atlas (NAC HNCMA Atlas 2013 [9]). First,

the anterior commissure (AC) point, posterior commissure (PC) point and 49 other

fiducial points are automatically detected by the BRAINS Constellation Detector [8]

for both the atlas and the subject images. A rigid transformation for each data set

is computed that aligns the AC point to (0,0,0) and sets the PC point to (0,−|AC-

PC|,0), and the mid-sagittal plane (MSP) is identified by optimizing the plane that
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maximally correlates intensity values from the right hemisphere to the left hemisphere

(as if reflected in a mirror). The rigid transformation is incorporated into the physical

space definition of image headers to avoid introducing interpolation errors. This

results in both the atlas and the subject being aligned at the AC point, along the AC-

PC line, and within the MSP. Subsequent to this initialization phase, the previously

identified 51 landmark points in atlas and subject space are used to estimate an affine

transform used to initialize the symmetric diffeomorphic image registration. In this

work, we use the inverse transformation estimated from BAW to register T1 AC-PC

aligned image to the common atlas space.

4.3 Shape Collapse Measurement Results

By computing the Euclidean distance dx, which represents the distance be-

tween means of two clusters defined by 2-mean clustering algorithm, for each point

x in the atlas space, we can generate a shape collapse map for each participant after

image registration. Figure 4.1 is a shape collapse map for one of the 50 participants.

In this example, we used a color overlay to visualize the amount of shape collapse

in different areas of the target image (Fig.4.1b). Red regions in the collapse map

have more collapse during image registration. The regions with shape collapse are

consistent with the areas where shape collapse were visually apparent in the deformed

image (Fig.4.1a), confirming that our algorithm has successfully quantized the amount

of shape collapse, and detected regions where shape collapse occurred during image

registration.
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(a) Deformed T1 image

(b) Collapse measurement

Figure 4.1: Shape collapse detection for one participant. (a) same deformed image as

in Fig. 1.1c; (b) color coded collapse image superimposed on image shown in (a) where

green corresponds to a collapse value of 0 mm and to red corresponds to a collapse

value of 3 mm. Red regions are regions with shape collapse after registration.



www.manaraa.com

30

4.4 Population Shape-Collapse Probability Map

For neurological studies, many brain images of a whole population are mapped

to a common atlas through pairwise registration. And each pairwise registration can

potentially have shape collapse problem, we want to evaluate the percentage of the

whole population that has a shape collapse problem at each point in the target image

space. All these lead to the concept of population shape collapse probability map,

which is explained in the rest of this section.

The shape collapse measurement/detection algorithm was used to compute the

shape collapse map for each of the 50 participants (25 healthy controls and 25 people

with bipolar disorder). A universal threshold T was applied to each of 50 shape

collapse maps, then the average of all the 50 thresholded maps gives a population

shape-collapse probability map for the whole brain. Let Ci : Ω→ R denote the map

of shape collapse measurement for the ith subject, where Ω is the domain of the target

image. Let Prob : Ω → R denote the population shape collapse probability map of

the population, for any point p ∈ Ω we have

Prob(p) =
1

50

50∑
i=1

Thres(Ci(p))) (4.1)

where Thres : R → {0, 1} is a function defined as Thres(a) = 0 if a < T , and

Thres(a) = 1 if a ≥ T . Choice of the threshold function is our choice of the definition

of whether there is a shape collapse problem at a point or not, i.e. if Ci(p) < T then

there is no collapse problem at point p of the ith participant, otherwise, there is a

collapse problem at point p of the iith participant during registration. The population

shape collapse probability map of 50 subjects is shown in Fig.4.2, which was obtained
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with threshold value T = 1 (i.e., the threshold value of the Thres function in Eq.

4.1 was set to 1). This color-coded population, shape-collapse, probability maps was

thresholded at 0.6 (i.e. regions with value less than 0.6 are not visualized). Regions

of red and orange show areas where collapse occurs for at least 60% of the individuals

in the population.

The population, shape-collapse, probability map gives information about the

regions where shape collapse problem is more likely to occur for this population

during diffeomorphic image registration. This information can be used to determine

whether or not there is functional signal loss when mapping functional data to a

reference coordinate system, develop algorithmic solutions to reduce shape collapse

problems and to determine the validity of population shape measurements when using

nonrigid image registration methods.

4.5 Gaussian Smoothing Kernel Analysis

We investigated the influence of the Gaussian smoothing kernel K (see Eq. 3.4)

in the SyN registration algorithm on reducing shape collapse using the 2D moving and

target phantom images shown in Fig. 1.2. The SyN registration algorithm was used

to register the moving brain phantom to the target brain phantom using a Gaussian

smoothing kernel with different variances σ2. Results of these experiments are shown

in Fig. 4.3. As we can see from the collapse maps, the collapse problem is reduced

while increasing the Gaussian kernel size. To see how well the transformations for

different Gaussian kernel size are, we overlaid the moving image with segmentation
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(a) Axial view

(b) Sagittal view

(c) coronal view

Figure 4.2: Orthogonal views of the 3D population, shape-collapse, probability map

in the atlas space (includes 25 normal controls and 25 euthymic individuals).
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(a) Deformed image, σ2 =

1

(b) Deformed image, σ2 =

1.5

(c) Deformed image, σ2 = 2

(d) Collapse map, σ2 = 1 (e) Collapse map, σ2 = 1.5 (f) Collapse map, σ2 = 2

Figure 4.3: Registration results for three SyN registrations that registered the moving

and target images shown in Fig. 1.2. The variance σ2 of the Gaussian smoothing kernel

used for registration is shown under each panel. Each collapse map was thresholded

at a value of 2.0 mm for better visualization. Notice that more collapse happens when

using Gaussian kernel with a smaller variance than with a larger variance.

and deform it with the transformation generated by the SyN algorithm. Although

the collapse reduced as we increase the size of the Gaussian kernel, we still have poor
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pointwise correspondence problem. For example, tip of the sulcus in the moving image

was not mapped to the tip of sulcus in the target image as we increase the kernel size.

Another example, circular regions are still distorted to oval shaped regions. In this

example, we can say that reducing collapse by increasing variance of Gaussian filter

does not mean we have solved the incorrect correspondence problem.

Table 4.1 shows the cross correlation and sum of squared differences between

the deformed moving image and the target image for different sizes of Gaussian

smoothing kernel. This table shows that as we increase the variance of Gaussian

kernel, the shape collapse problem is reduced and the registration result is getting

better. But when the variance becomes too large (i.e., variance = 3), although the

shape collapse still goes down, the registration result is getting worse. Therefore, this

is a trade off between the amount of collapse we want to reduce and the performance

of registration algorithm in terms of similarity between the deformed moving image

and the target image.
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(a) segmentation overlaid on moving im-

age

(b) Deformed label map, σ2 = 1.5

(c) Deformed label map, σ2 = 2 (d) Deformed label map, σ2 = 4

Figure 4.4: Deformed segmentation image with different Gaussian kernel size.
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Variance, σ2 Collapsemean Collapsemax CC Sqrt(SSD)

1.5 1.71 6.24 0.9900 1544
2 1.66 4.90 0.9945 1152

2.5 1.58 3.01 0.9931 1293
3 1.55 3.17 0.9942 1180

3.5 1.54 3.06 0.9936 1245
4 1.53 2.97 0.9894 1606
6 1.50 3.10 0.9894 1596
9 1.44 2.85 0.9825 2049

Table 4.1: Results of SyN registration with different smoothing kernels. The first

column shows the different smoothing variances used for the Gaussian smoothing

kernel. The second and third columns show the mean and maximum values of voxels

with value greater than 1 mm in the collapse map, respectively. The last column shows

the square roots of the sum of squared differences between the deformed moving image

and target image.

4.6 Shape Collapse Problem in Diffeomorphic Demons Algorithm

We have been using the symmetric diffeomorphic registration algorithm as a

representative to examine shape collapse problem in large deformation image regis-

tration methods. The SyN algorithm uses time-variant velocity field to parametrize

the flow of diffeomorphisms while diffeomorphic demons algorithm uses stationary

velocity field. Although diffeomorphic demons algorithm has less degrees of freedom

than SyN algorithm, we show that shape collapse problem also exists in diffeomorphic

demons algorithm using the above cortex phantom example.

Figure 4.5 shows how one cortex in Fig.4.5a collapsed to match another cortex
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(a) Moving image (b) Iteration 3 (c) Iteration 7

(d) Iteration 10 (e) Iteration 30 (f) Iteration 40

(g) Iteration 60 (h) Deformed image (i) Fixed image

Figure 4.5: Process of the collapse of phantom cortex using diffeomorphic demons.
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(a) Deformed image (b) Collapse map

Figure 4.6: Collapse map of diffeomorphic demons registration.

in Fig.4.5i when using diffeomorphic demons registration algorithm. The way how

cortex collapsed in Fig.4.5 during diffeomorphic demons registration is similar to col-

lapse of cortex in Fig.1.3 during SyN diffeomorphic registration, i.e., cortex collapsed

on the bottom and a new cortex grew out from the top.

In figure 4.6, which shows the collapse map of diffeomorphic demons registra-

tion, we can see that a large amount of collapse occurred at the bottom of the cortex

and some collapse (collapse of the background) also occurred at the top of the cortex.

This is consistent with the collapse process of cortex shown in Fig.4.5.

In figure 4.7, we deformed the moving image with segmentation overlaid (Fig.4.7a)

using the transformation from diffeomorphic demons registration output. The de-

formed label map (Fig.4.7b) also demonstrates that collapse problem causes: (1)



www.manaraa.com

39

(a) Moving image with segmentation

overlaid

(b) Deformed moving image with de-

formed segmentation overlaid

Figure 4.7: Collapse problem in diffeomorphic demons registration leads to incorrect

correspondence and loss of functional signal.

incorrect pointwise correspondence, e.g., the red and orange regions in the moving

image were not mapped to the corresponding regions in the fixed image; (2) loss of

functional signal, suppose there are some functional data inside the red and orange

regions, if we use this transformation to map the functional data to fixed image space,

we will lose lots of functional data because of collapse.



www.manaraa.com

40

CHAPTER 5
CONCLUSION AND DISCUSSION

Shape collapse occurs in image registration when a region in the moving image

is transformed into a set of near measure zero. We introduced a new method to detect

shape collapse in pairwise nonrigid image registration and demonstrated that shape

collapse problem exists in large deformation image registration methods by using the

symmetric diffeomorphic registration algorithm and the diffeomorphic demons reg-

istration algorithm as representatives. We showed that we need to consider shape

collapse problem seriously because it may lead to incorrect pointwise correspondence,

which consequently causes incorrect automatic image segmentation, and shape col-

lapse may also results in loss of functional data when we map all functional data into

a common space using a transformation with shape collapse.

We extended our shape collapse detection algorithm to compute the popula-

tion, shape-collapse probability map. This map can be used to determine whether or

not there is functional signal loss when mapping functional data to a reference coordi-

nate system, develop algorithmic solutions to reduce shape collapse problems and to

determine the validity of population shape measurements when using nonrigid image

registration methods. We showed that changing the smoothing kernel using SyN re-

duced the shape collapse in our example, but it still gave poor correspondence. This

study suggests that we still have more to do to reduce shape collapse and improve

registration.

One of the future things to do is to do a power analysis. For example, suppose
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10 out 30 subjects have shape collapse problem at a point, we need to evaluate the

loss of statistical power of statistical inferences at that point caused by shape collapse.

One simple way to reduce the effect of shape collapse on statistical power is to throw

away subjects with collapse at a that point. We also need to come up with efficient

ways to reduce shape collapse and perverse the correspondence accuracy. One way

to fix the collapse problem is to have multiple atlases (targets images). For example,

in our region of interest, some atlases have a single sulcus, some atlases may have

parallel sulcus, some atlases may have a “fork-shape” sulcus; some atlases may have

one interrupted sulcus and other atlases may not have a sulcus.
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